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Chaotic Transitions in Deterministic and Stochastic Dynamical
Systems: Applications of the Melnikov Method in Engineering, Physics,

and Neuroscience

E. Simiu

National Institute of Standards and Technology, Gaithersburg, MD, USA

ABSTRACT: The classical Melnikov method provides information on the behavior of deterministic planar
systems that may exhibit transitions, i.e. escapes from and captures into preferred regions of phase space. This
paper describes and illustrates a unified treatment of deterministic and stochastic systems that extends the ap-
plicability of the classical Melnikov method to physically realizable stochastic planar systems with additive,
state-dependent, colored, or dichotomous noise. The extended method yields the novel result that motions
with transitions are chaotic for either deterministic or stochastic excitation, explains the role in the occurrence
of transitions of the system and excitation characteristics, and is a powerful modeling and identification tool.

INTRODUCTION

The Melnikov method is a unified framework for
the study of transitions and chaos in a wide class of
deterministic and stochastic nonlinear planar dy-
namical systems with restoring force derived from a
multi-well potential. Its applications span a broad
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FIG. 1. (a) Potential wells. (b} Phase plane diagram for
Duffing-Holmes equation. The orbits that emerge from
and converge to saddle point O are the homoclinic orbits.

Periodic orbits confined to a well evolve inside a homo-
clinic orbit around one of the centers C, C’ those that’

cross the potential barrier evolve outside the homoclinic
orbits. The homoclinic orbits are separatrices between
these two types of motion.

spectrum of problems in engineering and the applied
sciences. In this paper we review fundamental re-
sults of Melnikov theory and, to give the reader a
sense of its capabilities, present a number of typical
applications.

As an example we consider the system

E=-V'(x)+e(yG(1) - px) M

where ¢ is small, G(¢) is a sufficiently well behaved
forcing function, # > 0, and V(x) is a double-well
potential (Fig. 1a).

We may use the notations x = x,, X = x,. The un-
perturbed counterpart of Eq. 1 corresponds to the
case £ = 0. For this case two types of generic mo-
tion can occur: (1) motions that evolve around C and
C’ and never cross the potential barrier; and (2) mo-
tions that evolve around the saddle point O and cross
that barrier periodically (Fig. 1b). The homoclinic
orbits, which approach O as t— to, are non-
generic and separate the two types of motion. No
motion is possible from outside the core defined by
the separatrix into the core, and vice-versa.

We now assume that in the perturbed (i.e., forced,
dissipative system) (Eq. 1), the forcing is harmonic.
In this case, three distinct types of steady-state dy-
namic behavior can occur.

(1) For sufficiently small forcing, depending
upon the initial conditions, the system moves peri-
odically about one of system’s centers as in Fig. 1b
(Fig. 2a).

(2) For sufficiently large forcing the motion
crosses the potential barrier periodically as in Fig. 1b
(Fig. 2b).
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(3) For intermediate excitation amplitudes, and
for restricted sets of initial conditions and excitation
frequencies, the steady-state motion is irregular,
even though the system is fully deterministic; hence
the term deterministic chaos. The motion evolves
about one of the centers, then it undergoes succes-
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FIG. 2. Types of steady-state dynamic behavior that may
be observed in a periodically forced, dissipative planar
system with a double-well potential: (a) periodic motion
confined to one well; (b) periodic motion visiting both
wells; (c) irregular motion with transitions.

sive ransitions, i.e., it changes successively to mo-
tion about another center (Fig. 2c). Transitions in
such irregular, deterministic motion are referred to
as chaotic. A transition away from motion in a po-
tential well is called an escape. For a large number
of systems it is required that steady-state motions
occur within a region called safe, that is, i.e., that
they not cross a potential barrier. For planar systems
subjected to periodic excitation an analytical condi-
tion that guarantees the non-occurrence of transitions
involves a function - the Melnikov function - consist-
ing of a sum of two terms related, through the sys-
tem’s potential, to the dissipation and excitation
terms.

Melnikov’s method was extended to quasiperi-
odically excited systems (Wiggins, 1988) and sto-
chastic systems (Frey and Simiu, 1993). The sto-
chastic counterpart of the Melnikov function is a
Melnikov process. Through the modulus of the Mel-
nikov transfer function -- a function of frequency
that depends upon the system’s potential -- the Mel-
nikov method provides information on the degree to
which the frequency components of the excitation
promote transitions effectively. :

In Section 2 we review basic results on Mel-
nikov functions and processes, and chaotic dynamics
results pertaining to the escape problem. The
remaining sections are devoted to applications.

2. MELNIKOV FUNCTIONS AND PROCESSES.
NECESSARY CONDITION FOR THE OCCURRENCE
OF EXITS

We consider the phase space x;,x;,0, where 8 = w¢,
Tis a constant, the axis 08, denoted by [, is nor-
mal to the plane x),x;, and O is the saddle point of
the unperturbed system (Fig. 3).

[WS(r,)m w*(T,)

B N
s T

N
S A

&A%

=
°
~

FIG 3. Stable and unstable manifolds for unperturbed
system.

The stable (unstable) manifold W*(I o) (W*(I o)) of
the hyperbolic orbit Iy is defined as the set of points
such that the orbits passing through them approach
Tpast—> o (t—>-o). A cross-section of the stable
and unstable manifolds with any plane & =const has
the coordinates of the system’s homoclinic orbits.
The stable and unstable manifolds coincide.

It follows from the persistence theorem that, for
sufficiently small ¢ the perturbed system has a hy-
perbolic orbit I", contained in a close neighborhood
of . The stable (unstable) manifold is defined as
the set of points such that the orbits passing through
those points approach I', asz—> o (t—-®).

For the perturbed system the stable and unstable
manifolds no longer coincide. To first order the dis-
tance between them is proportional to the Melnikov
function, which can be shown to have the expression

M(ty=-p ctym(l) )

¢ == h*(r)dr,
m(t) = [, h(z)G(r - 1)dx.
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where A(7), the ordinate of the homoclinic orbit in
the xy, x; plane can be obtained by integrating Eq. 1
with initial conditions at the saddle point. It can fur-
ther be shown that: (1) if M(f) has simple zeros the
stable and unstable manifolds intersect transversely,
and (2) transverse intersections are a necessary con-
dition for chaotic behavior and escapes. A cross-
section through intersecting stable and unstable
manifolds, which yields a so-called homoclinic tan-
gle, is depicted in Fig. 4.

FIG. 4. Plane cross-section through intersecting stable
and unstable manifolds. Chaotic transport takes point
A, located within the core bounded by the pseudosepa-
ratrix, through 4., and 4, to point 4,, located outside the
core.

It can be shown that the homoclinic tangle makes
possible the occurrence of chaotic motions and es-
capes of the type shown in Fig. 2c.

If G(¢) is quasiperiodic (i.e., a sum of harmonic
terms with amplitudes a;, generally incommensurate
frequencies @;, and phase angles &; (i=1,2,..n), it
follows from Egs. 2

m(t) = :Zla,. |a(®,)|cos[m;t + 6, —w(@,)] (3)

in which the transfer function a (@ ;) is the Fourier
transform of A(7), and w(w,) is the argument of
a (@) (Wiggins, 1988).

A physically realizable stochastic excitation can
be closely approximated by a sum of harmonic terms
with random parameters. A realization of the sto-
chastic process corresponds to a fixed set of parame-
ters. Therefore, instead of a Melnikov function, a
system with a stochastic excitation possesses an en-
semble of Melnikov functions, i.e., a Melnikov proc-
ess. If the system’s excitation y G(f) is Gaussian
with unit variance, the Melnikov process has expec-
tation - £ ¢, and spectral density

¥l o) =Cla(w)f ¥ o), 0]

FIG. 5. Realization of a square-wave dichotomous noise
process.

where W o(@) is the spectral density of G(f). Eq. 4
shows that, depending upon its shape, @ (®;) may
reduce or increase the contribution of the excita-
tion’s various frequency components to the Mel-
nikov process. This observation is useful in practical
applications, notably the open-loop control of es-
capes.

3. CONDITION FOR NONOCCURRENCE OF
ESCAPES IN SYSTEMS EXCITED BY DI-
CHOTOMOUS NOISE

The dichotomous noise G(f) we consider is depicted
in Fig. 5. No escapes can occur if M(f) has no simple
zeros. For example, since |G(#)|<1, for the double-
well potential ¥(x) = x*/4 - x*/2, which has the shape
shown in Fig. 1a, the condition that Eq. 2 not have
simple zeros (that escapes cannot occur) yields
v/ < 0.47 (Sivathanu, Hagwood, and Simiu,
1995). To our knowledge this is the only method for
obtaining a criterion guaranteeing the nonoccurrence
of escapes due to dichotomous noise.

4. VESSEL CAPSIZING

The empirical restoring force in the equation of roll-
ing motion of a vessel is derived from an M-shaped
potential, rather than a W-shaped potential as in Fig.
la. The spectrum of the Melnikov process induced
by the wave force has the form of Eq. 4; the spec-
trum of the wave force is equal to the spectrum of
the waves times the square of the modulus of an em-
pirical transfer function.

Using the phase space flux factor -- a functional
of the Melnikov function, -- Hsieh, Troesch, and
Shaw (1994) estimated capsizing probabilities of a
vessel for various time intervals and significant
wave heights.
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5. OPEN-LOOP CONTROL OF ESCAPES

Consider Eq. 1, where G(t)=GA)-kG(t-7), sy GA®)
is a stationary excitation process, &y kG.(t-7) is a
stationary control process whose addition to the sys-
tem will reduce the escape rate, 7 is a time lag, and
0<k<1. For the trivial choice G.(t)/G/t-7) and small
enough 7 the escape rate will be smaller in the con-
trolled than in the uncontrolled system. For 7=0 the
ratio between the average powers of the control and
excitation force is g=k". Melnikov theory can be
used to obtain open-loop control forces that achieve
reductions comparable to those due to a trivial con-
trol force, but with a smaller ratio g, i.e., with less
energy. It follows from Eq. 4 that this can be accom-
plished if the frequency content of the control force
is concentrated in the frequency interval where
|t (@ ))] is highest. For details and results, see Simiu
and Franaszek (1997) and Basios et al. (1999).

6. STOCHASTIC RESONANCE

Stochastic resonance is the phenomenon wherein,
for a system excited by a low-frequency harmonic in
the presence of noise, the output signal-to-noise ratio
can be enhanced by adding noise or a harmonic exci-
tation. From Melnikov theory it follows that the
spectral density of the added noise or the frequency
of the added harmonic excitation must correspond to
the largest ordinates of |a (@ ). The enhancement is
due to the chaotic nature of the motion, similar to the
motion of Fig. 2c, induced in the system by the exci-
tation, the original noise, and the added noise or har-
monic. If the escape rate is approximately equal to
the excitation frequency, energy from the broadband
spectrum inherent in the chaotic motion is trans-
ferred by a synchronization-like mechanism at that
frequency, thus enhancing the signal-to-noise ratio
(Franaszek, Simiu, 1996) — see Fig. 6.

7. SNAP-THROUGH OF A TRANSVERSELY
EXCITED BUCKLED COLUMN

Holmes and Marsden (1981) applied Melnikov the-
ory to a buckled column with continuous mass sub-
jected to a continuously distributed transverse
excitation with harmonic time dependence. This
dynamical system can be shown to have restoring
forces derived from a potential similar to Fig. 1a. An
extension of the theory to the case of excitation by
dichotomous noise yields a criterion for the nonoc-
currence of snap-through similar to the criterion of
Section 3 — see Simiu and Franszek (1996). An evo-
lution in time of the buckled column shape is de-
picted in Fig. 7.

8. WIND-INDUCED ALONG-SHORE CUR-
RENTS OVER OCEAN FLOOR WITH VARI-
ABLE TOPOGRAPHY

Observations yielded by moored current meters sug-
gest that wind-induced along-shore mesoscale veloc-
ity fields over a sloping, corrugated ocean floor (Fig.
8) contain energy in a continuous range of low fre-
quencies, a possible indication of chaotic behavior.
Allen et al. (1991) developed a simplified model of
the flow to which the Melnikov approach is applica-
ble. For wind speed fluctuations conforming to ac-
cepted meteorological models, Simiu (1996) ob-
tained criteria for the probability that the flow
motion can be chaotic during given time intervals.

log P(w)

log P(w)

log P(w)
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FIG. 6. Power spectra of motion induced in a bistable
system by harmonic and noise. The motion is chaotic in
all cases. In case (b) the noise is stronger than in case (a),
and the escape rate is approximately equal to the signal
frequency; a synchronization-like phenomenon occurs
that transfers broadband energy associated with the cha-
otic motion to the signal frequency and thus increases the
signal-to-noise ratio. For even larger noise, as in case (c),
that phenomenon does not occur and the signal-to-noise
ratio decreases.
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FIG. 7. Evolution in time of buckled column shape un-
dergoing snap-through induced by continuous stochastic
transverse excitation.

9. THE AUDITORY NERVE SYSTEM AS A
CHAOTIC DYNAMICAL SYSTEM

Figure 9 shows a typical time history of the response
of a nerve fiber to harmonic excitation in the pres-
ence of weak noise. Experirnental results reported in
the 1960’s are consistent with a model of the nerve
fiber responmse, including irregular “firings,” as a
planar dynamical system to which the Melnikov ap-
proach is applicable (Franaszek and Simiu, 1998).
Similar models can be used to represent and analyze
encephalograms and other plots of physiological or
physical phenomena exhibiting irregular transitions.

- - - -
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FIG. 8. Model of sloping continental shelf showing one
wavelength of along-shore periodic corrugation (after Al-
len, Samelson, and Newberger (1991).
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FIG. 9. Time history of motion induced in auditory
nerve fiber by harmonic excitation in the presence of
weak noise.
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